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Last time
Generative models: intensity-based (e.g. 2D images)  and scene-based (e.g. 3D graphics)

Point spread functions, principle of superposition, led to convolution model of image transformation by the optics

Today
Linear systems analysis: Linear intensity-based image models + linear systems

Fourier synthesis/analysis, and the spatial frequency analysis of images

Vector/matrix modeling of optical image transformation

Linear systems

Eigenfunctions of linear shift-invariant systems

Spatial frequency analysis

Application: Modulation transfer functions and the human eye

Preview: Sinewaves are a special type of pattern. We'll try to understand why, and why they are useful.



Linear systems analysis
The world of input/output systems can be divided up into linear and non-linear systems. Linear systems are nice because 
the mathematics that describes them is not only well-known, but also has a mature elegance. On the other hand, it is a fair 
statement to say that most real-world systems are not linear, and thus hard to analyze...but fascinating if for that reason 
alone. That nature is usually non-linear doesn't mean one shouldn't familiarize oneself with the basics of linear system 
theory. Many times a non-linear system has a sufficiently smooth mapping that it can be approximated by a linear one over 
restricted ranges of parameter values. The assumption of linearity is an excellent starting point--but must be tested. The 
optics of the eye can be approximated as a linear system over small patches. The retinal and neural networks in primary 
visual cortex can also be approximated as linear systems.

So exactly what is a "linear system"?

The notion of a "linear system" is a generalization of the input/output properties of a straight line passing through zero. For 
any matrix W, the equation W.g == f represents a linear system, and so is the one we studied above (T.g = f). If W is  a 
matrix, g1 and g2 are vectors, and a and b are scalars, it is easy to show that:

                     W.(a g1 + b g2) = a W.g1 + b W.g2

This is a consequence of the laws of matrix algebra.The idea of a linear system has been generalized beyond matrix 
algebra.  Imagine we have a box that takes inputs such as g, and outputs f = T[g].

The abstract definition of a linear system is that it satsifies:

                     T[a g1 + b g2] = a T[g1] + b T[g2]

where T is the transformation that takes the sum of scaled inputs g1, g2 (which can be functions or vectors) to the sum of 
the scaled transformation of g1 and g2. The property, that the output of a sum is the sum of the outputs, is sometimes 
known as the superposition principle for linear systems--the assumption we needed to add up all the PSF contributions 
earlier. The property that a scaled version of the input results in an output scaled by the same amount (i.e. by a or by b) is 
called the homogeneity principle. The fact that linear systems show superposition is good for doing theory, but as we will 
see later, it limits the kind of input/output computations that can be done with linear systems, and thus with linear neural 
network models.

2 8.LinearSystemsOptics.nb



The abstract definition of a linear system is that it satsifies:

                     T[a g1 + b g2] = a T[g1] + b T[g2]

where T is the transformation that takes the sum of scaled inputs g1, g2 (which can be functions or vectors) to the sum of 
the scaled transformation of g1 and g2. The property, that the output of a sum is the sum of the outputs, is sometimes 
known as the superposition principle for linear systems--the assumption we needed to add up all the PSF contributions 
earlier. The property that a scaled version of the input results in an output scaled by the same amount (i.e. by a or by b) is 
called the homogeneity principle. The fact that linear systems show superposition is good for doing theory, but as we will 
see later, it limits the kind of input/output computations that can be done with linear systems, and thus with linear neural 
network models.

Shift-invariance means that if:

g(x,y) -> f(x,y)

then if you shift the input image over by (a,b) and run it through the transformation, you get the same result as just shifting 
over the original output image by the same amount:

g(x-a, y-b)Øf(x-a, y-b)

Shift-invariance is a good assumption over small optical regions. But once the image gets transduced, it breaks down for 
visual neural processing due to the large differences between foveal and extra-foveal vision.

Vector/matrix modeling of image transformations: Linear intensity-based
Suppose that T[ ] is a linear system, with g1 and g2 input images (on a high-resolution computer screen that you are 
viewing), and f1, f2 output images (e.g. on your retina). By definition, if

g1 -> f1

and

g2 -> f2,

then a linear combination of the inputs maps to a linear combination of the outputs

a*g1+ b*g2 -> a*f1 + b*f2

where a and b are scalar weights. We now want to understand how to characterize the transformation in terms of the 
properties of a matrix T. 

But first let's see the ways in which one can represent the input vector as combinations of other vectors. We'll assume a 
linear intensity-based generative model of images.
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Vector/matrix modeling of optical image transformation: Simple 1D case

‡ Output image "response" to a single point of light (pixel)

For the time being, let's pretend our images are one-dimensional, and represented as vectors whose positions indicate pixel 
location, and whose values are intensities. Suppose that an input image g ={g1,g2,...}.

Let an input test image (e.g. on a computer test screen) be represented by ui = {0,0,0,...,1,...} where all pixels are black 
(zero) except for the ith one which is bright (1) .  If the 4th pixel is bright, for example, the test image is represented by a 
vector u4 = {0,0,0,1,0,0,...}:

u4=

0
0
0
1
0
0
0
0

We'll use bold for vectors and matrices, and plain for scalars. Let t4 = {t6, t7, t8,t1, ...} represent the output image (e.g. 
retinal image), i.e. point spread function (PSF), that results from u4

t4=

t6
t7
t8
t1
t2
t3
t4
t5

For example, if there is a little local blurring, t4 might look like this:

t4=

0
0

1 ê4
1 ê2
1 ê4

0
0
0
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In[28]:= u4 = 80, 0, 0, 1, 0, 0, 0, 0<;
t4 = 80, 0, 1 ê 4, 1 ê 2, 1 ê 4, 0, 0, 0<;
GraphicsRow@8ArrayPlot@8u4<, ColorFunction Ø "GrayTones"D,

ArrayPlot@8t4<, ColorFunction Ø "GrayTones"D<D

Out[30]=

‡ Output image "response" to a spatially shifted point of light

What if we now shift the input pattern over a position, so the bright pixel is at the (i+1)th position? E.g.

u5=

0
0
0
0
1
0
0
0

For a system like the eye, we might expect that the output image would be basically the same form, except that it also gets 
shifted over:

t5=

X
t6
t7
t8
t1
t2
t3
t4

 

We've stuck an "X" at the slot left open after the shift. There are various ways of modeling the boundaries. One way which 
is convenient mathematically is to use a circular boundary which works quite well for large images, and where the PSF is 
local and falls off to zero away from the ith position. Then we wrap the entries around, so in the above case X -> t5. 

t5=

0
0
0

1 ê4
1 ê2
1 ê4

0
0

In other words, the image of a point shifted over (t5) has the same form as t4--it is just offset by the shift.

‡ Output image "response" to an arbitrary image g
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‡

Output image "response" to an arbitrary image g

Let's see how g gets transformed to an output image f, through a transformation matrix T. 

We'll generalize things a bit. Let u1, u2, u3, .... be the shifted test images where the bright pixel is at location 1, 2, ...:

u1 = 

1
0
0
0
0
0
0
0

, u2 =  

0
1
0
0
0
0
0
0

, ...

This is the familiar Cartesian basis set for vectors.

Using our linear intensity-based model of image patterns, we can express the (arbitrary) input image g as a weighted linear 
sum of the test images:

g = 

g1
g2
g3
g4
g5
g6
g7
g8

 = g1

1
0
0
0
0
0
0
0

+ g2 

0
1
0
0
0
0
0
0

 + ... = g1 u1 + g2 u2 + ...

The weights are just the intensities of the pixels. 

Assuming that the transformation T[ ] is linear, then the following holds:

 f = T[g] = T[g1 u1 + g2 u2 + ...] = g1 T[u1] + g2 T[u2] + ...= g1 t1 + g2 t2 + ...

Each T[ui], i = 1, 2,... is the blurry image of the input test images, ui. 

The transformation T can be represented by a matrix that multiplies g.  Assuming shift-invariance, we can line up all the ti 
vectors in columns to represent the output as matrix T times input g:

f =

t1 t8 t7 t6 t5 t4 t3 t2
t2 t1 t8 t7 t6 t5 t4 t3
t3 t2 t1 t8 t7 t6 t5 t4
t4 t3 t2 t1 t8 t7 t6 t5
t5 t4 t3 t2 t1 t8 t7 t6
t6 t5 t4 t3 t2 t1 t8 t7
t7 t6 t5 t4 t3 t2 t1 t8
t8 t7 t6 t5 t4 t3 t2 t1

g1

g2
g3
g4
g5
g6
g7
g8

= T.g

For mathematical convenience, we are using "circulant" boundaries, i.e. that wrap around. The practical justification is that 
images are usually big, and if the blur small relative to the size of the image, then the boundaries don't contribute much to 
the center of the image. 

A matrix for which the values along diagonals are the same is called a Toeplitz matrix.  A circulant matrix is a special case 
of a Toeplitz matrix in which each subsequent row is a copy of the previous row but shifted one element to the right. 
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For mathematical convenience, we are using "circulant" boundaries, i.e. that wrap around. The practical justification is that 
images are usually big, and if the blur small relative to the size of the image, then the boundaries don't contribute much to 
the center of the image. 

A matrix for which the values along diagonals are the same is called a Toeplitz matrix.  A circulant matrix is a special case 
of a Toeplitz matrix in which each subsequent row is a copy of the previous row but shifted one element to the right. 

‡ Shift-invariance and symmetric transformations, T

Let's take our model one step further. In addition to shift-invariance, we might also expect an optical system like the eye to 
show symmetry, i.e. the PSF is radially symmetric, or in 1-D our transformation matrix becomes:

t1 t2 t3 t4 t5 t6 t7 t8
t2 t1 t2 t3 t4 t5 t6 t7
t3 t2 t1 t2 t3 t4 t5 t6
t4 t3 t2 t1 t2 t3 t4 t5
t5 t4 t3 t2 t1 t2 t3 t4
t6 t5 t4 t3 t2 t1 t2 t3
t7 t6 t5 t4 t3 t2 t1 t2
t8 t7 t6 t5 t4 t3 t2 t1

One of the benefits of the symmetric shift-invariant properties of the eye's optics is that we can model the transformation 
as a symmetric toeplitz matrix. As we will see later, these properties suggest an alternative basis set to represent images. 
Rather than represent an image as a linear combination of points (i.e. the above u's), images will be represented as a linear 
combination  of spatial sinewave gratings. We'll see how the symmetric shift-invariant case provides a particularly simple 
example of Fourier analysis/synthesis. 

So in standard Mathematica format, the above matrix calculation is written as:

88t1, t8, t7, t6, t5, t4, t3, t2<, 8t2, t1, t8, t7, t6, t5, t4, t3<,
8t3, t2, t1, t8, t7, t6, t5, t4<, 8t4, t3, t2, t1, t8, t7, t6, t5<,
8t5, t4, t3, t2, t1, t8, t7, t6<, 8t6, t5, t4, t3, t2, t1, t8, t7<,
8t7, t6, t5, t4, t3, t2, t1, t8<, 8t8, t7, t6, t5, t4, t3, t2, t1<<.

8g1, g2, g3, g4, g5, g6, g7, g8<

8g1 t1 + g8 t2 + g7 t3 + g6 t4 + g5 t5 + g4 t6 + g3 t7 + g2 t8,
g2 t1 + g1 t2 + g8 t3 + g7 t4 + g6 t5 + g5 t6 + g4 t7 + g3 t8,
g3 t1 + g2 t2 + g1 t3 + g8 t4 + g7 t5 + g6 t6 + g5 t7 + g4 t8,
g4 t1 + g3 t2 + g2 t3 + g1 t4 + g8 t5 + g7 t6 + g6 t7 + g5 t8,
g5 t1 + g4 t2 + g3 t3 + g2 t4 + g1 t5 + g8 t6 + g7 t7 + g6 t8,
g6 t1 + g5 t2 + g4 t3 + g3 t4 + g2 t5 + g1 t6 + g8 t7 + g7 t8,
g7 t1 + g6 t2 + g5 t3 + g4 t4 + g3 t5 + g2 t6 + g1 t7 + g8 t8,
g8 t1 + g7 t2 + g6 t3 + g5 t4 + g4 t5 + g3 t6 + g2 t7 + g1 t8<

Our transformation matrix T is completely characterized by just one vector (which just gets repeated and shifted). In fact 
this filtering operation can be done using a convolution operator.  ListConvolve[ ] gives us the same answer:
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ListConvolve@8t1, t2, t3, t4, t5, t6, t7, t8<,
8g1, g2, g3, g4, g5, g6, g7, g8<, 1D

8g1 t1 + g8 t2 + g7 t3 + g6 t4 + g5 t5 + g4 t6 + g3 t7 + g2 t8,
g2 t1 + g1 t2 + g8 t3 + g7 t4 + g6 t5 + g5 t6 + g4 t7 + g3 t8,
g3 t1 + g2 t2 + g1 t3 + g8 t4 + g7 t5 + g6 t6 + g5 t7 + g4 t8,
g4 t1 + g3 t2 + g2 t3 + g1 t4 + g8 t5 + g7 t6 + g6 t7 + g5 t8,
g5 t1 + g4 t2 + g3 t3 + g2 t4 + g1 t5 + g8 t6 + g7 t7 + g6 t8,
g6 t1 + g5 t2 + g4 t3 + g3 t4 + g2 t5 + g1 t6 + g8 t7 + g7 t8,
g7 t1 + g6 t2 + g5 t3 + g4 t4 + g3 t5 + g2 t6 + g1 t7 + g8 t8,
g8 t1 + g7 t2 + g6 t3 + g5 t4 + g4 t5 + g3 t6 + g2 t7 + g1 t8<

When we do  a convolution (a correlation, as in ListCorrelate[kern,list, offset]), we can specify that Mathematica use a 
circular boundary, and place kern in the first row, but aligned relative to list by offset .

Characterizing a linear system by its response to an orthonormal basis set

‡ Orthonormal basis sets

Given an image, we can think of it as being composed of a weighted sum of basic or "basis" images that together make up 
a "basis set" (e.g. the u's above). Each image is a vector of the same dimensionality as the image, but is presumed fixed. 
What is a "good" basis set? We have lots (¶) to choose from, and what is best will depend on what we are doing.

The simplest basis set (the Cartesian set used above) corresponds to our standard pixel representation for images, where 
the ith pixel is represented by a vector that is all zero's except for the ith element which is 1. 

Suppose we have a different basis set (e.g. a "Walsh" set defined below).  Let's call the ith basis image w[i]. Any 8-pixel 
image g can be written:

g = g@1D

.3535

.3535

.3535

.3535

.3535

.3535

.3535

.3535

+ g@2D

+.3535

-.3535
-.3535
+.3535
+.3535
-.3535
-.3535
+.3535

+ ... = g@1D w@1D + g@2D w@2D + ...

If the set  {wi} = {w[i]} is orthogonal , then w[i] . w[j] = 0 for i¹≠j. Note that w[i] is the ith vector in the set--not a scalar.

If it is normal , then w[i] . w[i]=1. (The vector length of each basis vector is 1).

If the set is complete , then it spans 8-space in such a way that we can express any 8-d vector as a linear sum of these basis 
vectors. 

Orthonormal (orthogonal and normalized) basis sets make it easier to do calculations. 

Are there other orthonormal sets than the Carteisian or Walsh set? Again, there are lots, and again which one we use will 
depend on the job at hand. 

Let {wi}= {w[i]} be any orthonormal set. Then an arbitrary vector, g can be represented as a weighted sum of the 

orthonormal vectors, each weighted by the amount g projects onto  wi i.e, (g.wi). 
The vector 8g.w1, g.w2, g.w3 ...< is sometimes called the spectrum of g. We have: 
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depend on the job at hand. 

Let {wi}= {w[i]} be any orthonormal set. Then an arbitrary vector, g can be represented as a weighted sum of the 

orthonormal vectors, each weighted by the amount g projects onto  wi i.e, (g.wi). 
The vector 8g.w1, g.w2, g.w3 ...< is sometimes called the spectrum of g. We have: 

(1)g = ‚Hg.wiLwi
In our first example (the above u's), the dot product is really simple and g.wi= g[[i]], i.e. the ith element of vector g. 

‡ Application to an "unknown" system

How can one go about measuring the matrix to characterize a linear system such as the optics of the eye? Or a neural 
system?

We won't presume symmetry or shift-invariance.

Suppose we have an unknown physical system, which we model as a linear system with matrix T:

T = Table@RandomReal@D, 8i, 1, 8<, 8j, 1, 8<D;

Goal: We would like to make a simple set of measurements that could characterize T in such a way that we could 
predict the output of T to any input. 

This is the sort of task that engineers face when wanting to characterize, say a stereo amplifier (as a model linear system), 
so that the output sound can be predicted for any input sound.What kind of measurements would tell us what T is? As we 
did above, we could just "stimulate" the system with cartesian vectors {1,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0}, and so forth and 
collect the responses which would be the columns of T. This has two practical problems: 1) for a real physical system, 
such as your stereo, or a neuron in the eye, this would require stimulating it with a high-intensity audio or light intensity 
spike, which could damage what you are trying to study; 2) Characterizing the linear system by a matrix T, requires 
n2numbers, where n is the input signal vector length--and n can be pretty big for both audio and visual systems. Problem 
2) can be solved when T is symmetric and/or shift-invariant (because of the redunduncy,  O(n) numbers are sufficient). 
Problem 1) can be addressed by showing that we can characterize T with any basis set--so we can pick one that won't blow 
out the physical system being tested.

As an example, consider the orthonormal set (v's below) of Walsh functions. It has the advantage that the elements that 
contribute to the "energy", i.e. (the square of the length) are distributed across the vector.

Vectorlength[x_] := N[Sqrt[x.x]]
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v1 = {1, 1, 1, 1, 1, 1, 1, 1}; w1 = v1/Vectorlength[v1];
v2 = {1,-1,-1, 1, 1,-1,-1, 1}; w2 = v2/Vectorlength[v2];
v3 = {1, 1,-1,-1,-1,-1, 1, 1}; w3 = v3/Vectorlength[v3];
v4 = {1,-1, 1,-1,-1, 1,-1, 1}; w4 = v4/Vectorlength[v4];
v5 = {1, 1, 1, 1,-1,-1,-1,-1}; w5 = v5/Vectorlength[v5];
v6 = {1,-1,-1, 1,-1, 1, 1,-1}; w6 = v6/Vectorlength[v6];
v7 = {1, 1,-1,-1, 1, 1,-1,-1}; w7 = v7/Vectorlength[v7];
v8 = {1,-1, 1,-1, 1,-1, 1,-1}; w8 = v8/Vectorlength[v8];

Consider an arbitrary 1-D image g:

g = {2,6,1,7,11,4,13, 29};

g can be written as the sum of its own projections onto the basis set:

(g.w1) w1  + (g.w2) w2  +(g.w3) w3  +(g.w4) w4  +
(g.w5) w5  + (g.w6) w6  +(g.w7) w7  +(g.w8) w8

82., 6., 1., 7., 11., 4., 13., 29.<

Suppose we now do an "experiment" to find out how T transforms the vectors of our basis set:, and we put all of these 
transformed basis elements into a new set of vectors newW[[i]]. newW is a matrix for which each column is the response 
of T to a basis vector.

newW = Transpose[{T.w1,T.w2,T.w3,T.w4,T.w5,T.w6,T.w7,T.w8}];

Note that newW is an 8x8 matrix. So how can we calculate the output of T, given g without actually running the input 
through T? 

By the principle of linearity, we can also calculate the output by finding the "spectrum" of g, and then scaling each of the 
transformed basis elements by the spectrum and adding them up:

(2)T.g = T.9‚Hg.wiLwi= = ‚Hg.wiL T.wi

(g.w1) T.w1 + (g.w2) T.w2 + (g.w3) T.w3 + (g.w4) T.w4 + 
(g.w5) T.w5 + (g.w6) T.w6 + (g.w7) T.w7 + (g.w8) T.w8

826.6453, 30.0773, 42.8788, 29.0873, 48.1378, 42.0447, 22.1362, 54.9271<

‡ ..but we don't have to run the basis vectors through T each time

Of course, we have already done our "experiment in the lab", so we know what the transformed basis vectors {T.w1, ...} 
are, we stored them as columns of the matrix newW. We can calculate what the spectrum (g.wi) is, so the output of T is:
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(g.w1) Transpose[newW][[1]] + (g.w2) Transpose[newW][[2]] + (g.w3) Transpose[newW][[3]] + 
(g.w4) Transpose[newW][[4]] + (g.w5) Transpose[newW][[5]] + (g.w6) Transpose[newW][[6]] + 
(g.w7) Transpose[newW][[7]] + (g.w8) Transpose[newW][[8]]

826.6453, 30.0773, 42.8788, 29.0873, 48.1378, 42.0447, 22.1362, 54.9271<

The point is that once we've measured the output to the complete set of basis images, we just store those image (just 8 of 
them in this simple example). 

Then we can get the output to any arbitrary input image by computing the spectrum of the input and using those values as 
weights for the stored images. 

The PSF was a special case of the "stored image", but was simpler because of shift-invariance. Here we are not assuming 
shift-invariance.

Check our answer: If we "go back to the lab" and run the input through T we get:

T.g

826.6453, 30.0773, 42.8788, 29.0873, 48.1378, 42.0447, 22.1362, 54.9271<

‡ Same thing in more concise notation

Let  the basis vectors be the rows of a matrix W:

W = 8w1, w2, w3, w4, w5, w6, w7, w8<;

So again, we can project g onto the rows of W, and then reconstitute it in terms of W to get g back again:

HW.gL.W

82., 6., 1., 7., 11., 4., 13., 29.<

newW.W.g

833.4443, 24.4767, 33.6792, 46.3589, 26.9546, 20.6934, 37.5313, 33.1454<

What if the choice of basis set is the set of eigenvectors of T?
We are now going to introduce an elegant idea that will simplify our analysis of linear shift-invariant systems. Our illustra-
tion relies on a result from linear algebra that says the eigenvectors of a symmetric matrix are real and orthogonal. In 
general, one can relax the assumption of symmetry.

‡ Eigenvectors and eigenvalues--short review
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‡

Eigenvectors and eigenvalues--short review

Eigenvectors

An eigenvector, x,  of a matrix, A,  is vector that when you multiply it by A, you get an output vector that points in the 
same direction as x:

Ax = λx

where λ is a scalar that adjusts the length change of x.

The Mathematica function Eigenvectors[A] returns the eigenvectors of matrix A as the rows of a matrix, which we'll call 
eig:

A = {{1,2},{3,4}};
eig = Eigenvectors[A]

1
6
I-3 - 33 M 1

1
6
I-3 + 33 M 1

We can verify that eig[[1]] and A.eig[[1]] lie along the same direction by taking the dot product of the unit vectors point-
ing in the directions of each:

normalize[x_] := x/Sqrt[x.x];
normalize[eig[[1]]].normalize[A.eig[[1]]];
N[%]

-1.

Eigenvalues

The eigenvalues are given by:

Eigenvalues[A]

:
1

2
I5 - 33 M,

1

2
I5 + 33 M>

Eigenvalues and eigenvector elements do not have to be real numbers. They can be complex, that is an element can be the 
sum of a real and imaginary number. In Mathematica, imaginary numbers are represented by multiples (or fractions) of I, 
the square root of -1:
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Sqrt[-1]
Sqrt[-1]//StandardForm

Â

I

B = {{1,2},{-3,4}};
Eigenvalues[B]

:
1

2
I5 - Â 15 M,

1

2
I5 + Â 15 M>

We've seen how linearity provides us with a method for characterizing a linear system in terms of the responses of the 
system to the basis vectors. The problem is that if the input signals are long vectors, say with dimension 40,000, then this 
set of basis vector responses is really big--1.6x109 numbers.

Construct a symmetric matrix transformation, T, with eigenvectors {wi}. Then,

T.wi=li wi
The eigenvectors of a symmetric matrix are orthogonal and real-valued (very nice). Now we use those same eigenvectors 
of T to represent the input g. If the elements of the basis set are the eigenvectors of T, then the transformation of any 
arbitrary input vector g is given by:

(3)T.g = T.9‚Hg.wiLwi= = ‚Hg.wiL T.wi = ‚ai li wi
Where the aiare the projections of g onto each eigenvector. Having the eigenvectors of T enables us to express the input 
and output of T in terms of the same basis set--the eigenvectors. All T does to the input is to scale its projection onto each 
eigenvector by the eigenvalue for that eigenvector. The set of these eigenvalues, { li}  is sometimes called the modulation 
transfer function because it describes how the amplitude of the eigenvectors change as they pass through T.

Linear systems analysis is the foundation of Fourier analysis, and is why it makes sense to characterize your stereo 
amplifier in terms of frequency response. But your stereo isn't just any linear system--it has the special property that if you 
input a sound at time t and measure the response, and then you input the same sound again at a later time, you get the same 
response, except of course that is is shifted in time. It is said to be a shift-invariant system. The eigenvectors of a shift-
invariant system are sinusoids. (The eigenvectors of the symmetric matrix are sinusoids, not just because the matrix was 
symmetric, but also because each row of the matrix was a shifted version of the previous row--the elements along any 
given diagonal are identical-- a symmetric Toeplitz matrix.)

Sinewave inputs are the eigenvectors of your stereo system. The dimensionality is much higher--if you are interested in 
frequencies up to 20,000 Hz, your eigenvector for this highest frequency would have least 40,000 elements--not just 8!

This kind of analysis has been applied not only to physical systems, but to a wide range of neural sensory systems. For the 
visual system alone, linear systems analysis has been used to study the cat retina (Enroth-Cugell and Robson, 1964), the 
monkey visual cortex, and the human contrast sensivity system as a whole (Campbell and Robson, 1968).

Much empirical analysis has been done using linear systems theory to characterize neural sensory systems, and other 
neural systems such as those for eye movements. It works wonderfully as long as the linear system approximation holds. 
And it does do quite well for the lateral eye of the limulus, X-cells and P-cells of the mammalian visual system, over 
restricted ranges for so-called "simple" cells in the visual cortex, among others. The optics of the simple eye is another 
example of an approximately linear system. Many non-linear systems can be approximated as linear systems over smooth 
subdomains.
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‡ Summary of frequency analysis

In summary, if T has n distinct orthogonal eigenvectors, e i, and known eigenvalues, li,  then we have a particularly easy 
way to calculate the response to an input g:

Step 1: Project g onto eigenvectors of T using the dot product: g.e i

Step 2: Scale each g.e iby the eigenvalue of e i: lig.e i

Step 3: Scale each e i by lig.e i

Step 4: Sum these up. That's the response of T to g : f = ⁄i Hli g.e iL e i

The Modulation Transfer Function (MTF) of the human eye

Gratings: Eigenfunctions of linear shift-invariant optics
Now a point of light, a face, a square wave grating do not maintain the same form through optical transformation, because 
aberrations and diffraction blur the edges. However, for a spatially homogeneous optical system, a sine-wave grating does 
keep the same form (consistent with the shift-invariant properties of a linear system). The figure below shows pictures of a 
square-wave and a sine-wave (you need 256 gray-levels to see the sine-wave grating). What happens to the form of the 
two intensity patterns when you blur your eyes?
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‡ Blurring: Sine vs. square

Grating@x_, y_, fx_, fy_D := Cos@2 Pi Hfx x + fy yLD;

Square@x_, y_, fx_, fy_D := Sign@Grating@x, y, fx, fyDD;

gsine = DensityPlot@0.25 * Grating@x, y, 4, 0D, 8x, -1, 1<, 8y, -1, 1<,
PlotPoints Ø 64, Mesh Ø False, Frame Ø False, PlotRange Ø 8-1, 1<,
ColorFunction Ø "GrayTones"D;

gsquare = DensityPlot@0.25 * Square@x, y, 4, 0D, 8x, -1, 1<,
8y, -1, 1<, PlotPoints Ø 64, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, ColorFunction Ø "GrayTones"D;

Show@GraphicsRow@8gsine, gsquare<DD

Sine-wave gratings are eigenfunctions of linear shift-invariant systems. Our complete basis set (a collection of 
eigenfunctions, 8bi<) will have to be built out of collection of gratings of various frequencies (combinations of fx and fy 
produce different orientations) and phases (f). So if we can represent our images in terms of sums of sine-wave gratings, 
then we can model how a linear shift-invariant optical system distorts the image. This kind of representation of an image is 
called Fourier Analysis. Because we are talking about intensity as a function of space (we'll get to time later), this kind of 
Fourier analysis is called spatial frequency analysis of images.
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Fourier analysis

‡ Representing images: The formal case, continous variable case -> Fourier transform

A complete formal analysis for continuous images is the analog to the discrete model we introduced above, where frequen-
cies can take on continuous values.  The basic formalism is similar, with summation replaced by integration, and complex 
variables are used (to compactly and efficiently deal with phase relationships between the gratings). In one spatial dimen-
sion, the forms are given by:

Fourier transform : F HfxL =
1

2 p
‡
-¶

¶
image HxL ei2pfx x „x ,

Inverse fourier transform : image HxL =
1

2 p
‡
-¶

¶
F HfxL e-i2pfx x „fx

Mathematica has built-in functions FourierTransform[] and InverseFourierTransform[] to deal with symbolic manipula-
tions for the continuous case. Fourier[] handles the discrete numerical calculations. One theoretical advantage of Fourier 
transforms is that, in contrast to Fourier series, one is not limited to periodic images.

‡ Actual practice: hybrid discrete-continuous

But in actual practice, we might use some discrete collection of continuous gratings (Fourier series) to approximate the 
image as:

image = ⁄iai bi + b0

aibi= aiCos[2 Pi (fxi x+ fyi y) + fi]

b0 is the average background light level, and ai I= aiinM is the amplitude of the grating. Often,
we talk only about the contras t of the grating :

contrast = 
ai
b0

. 

The reason is psychophysical and physiological--the human visual system is largely invariant to average background 
level--contrast corresponds well to the relative variations in brightness that you see in an image pattern, as well as to the 
neural variations transmitted from the retina to the brain. So for convenience, we can drop the b0term which is constant, 
and if there is negligible absorption by the optics, remains unchanged anyway. The set {ai} is the amplitude spectrum of 
the image, and {fi} the phase spectrum. Both are usually plotted as a function of frequency (here indexed by i).
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The Modulation Transfer Function (MTF)

‡ Characterizing on optical system

In order to characterize an optical system, the idea is to measure how the amplitude (contrast) of the eigenfunctions (sine 
wave gratings) changes as a function of spatial frequency. The ratio of output grating amplitude to input amplitude (as a 
function of spatial frequency) is called the modulation transfer function of the optical system (e.g. eye):

Of course, the spatial scale will change with optical minification or magnification. We will assume the scale is the same. 
We can always put the right scale back in with a suitable mapping x-> scale factor * x.

Suppose the input contrast amplitude is fixed, say aiin = 1. Then  aioutis the MTF. In one dimension, we'll write a(f) = aiout.

Can you guess what a typical modulation transfer function would do the the following gratings, going from low to high 
spatial frequencies?
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g = Table@DensityPlot@0.5` Grating@x, y, fx, 0D, 8x, -1, 1<,
8y, -1, 1<, PlotPoints Ø 128, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, ColorFunction Ø "GrayTones"D, 8fx, 1, 7, 2<D;

Show@GraphicsRow@8gP1T, gP2T, gP3T, gP4T<DD

‡ Some answers

Here are two possible MTFs:

The form of these curves makes intuitive sense. The amplitudes of low spatial frequency gratings remains largely 
unchanged going through the optics. On the other hand, at high spatial frequencies, the light and dark bars are close 
together and get smeared out by aberrations. You might think that the negative part of the MTF is a little unlikely. In fact, 
it is quite common.  An example is when your eye is out of focus. The contrast at those spatial frequencies corresponding 
to negative MTF undergo phase reversal. This is called spurious resolution. You can't really notice this with ordinary 
images, but can see it with sinewave grating images. 

‡ Visualizing your own contrast sensitivity function (CSF)

Warning--executing the next cell can take some time.
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CSF@x_, y_D := 127.5 ‰
-

y
0.125 CosB2 p ‰

x
4 xF + 127.5;

csfg = DensityPlot@CSF@x, yD, 8x, 0, 6<, 8y, 0, 1<, PlotPoints Ø 512,
PlotRange Ø 81, 254<, Mesh Ø False, Axes Ø False, Frame Ø False,
ColorFunction Ø "GrayTones"D

There is an apparent fall-off in contrast sensivity for high frequencies; however, there is also a drop-off at low frequencies. 
We'll focus on the high spatial frequency fall-off and return to the reasons for the low frequency loss later.

‡ To re-cap

So the sine waves are the known basis functions, the MTF {ti’s} is measured, and the spectrum (Li’s) can be calculated 
from an image using a fourier transform subroutine. Then our discrete-hybrid analog of what we introduced at the very 
beginning of this lecture says that knowing the human eye's MTF, we can calculate the input image g, 

g = ‚
i

Hg.biL bi = ‚aiin bi

retinal image f, as:

f = ⁄i aiinlibi
where

li =
aiout

aiin
, is the MTF.

‡ For the advanced...

For the continuous case, the image at the retina could be represented as an integral of the spectrum, the modulation 
transfer function, and the basis functions (or eigenfunctions):

r(x,y)=Ÿ gI fx, fyM TI fx, fyM bIx, y; fx, fyM „ fx„ fy

where LI fx, fyM is the (complex-valued) spectrum, TI fx, fyM the optical transfer function (takes into account phase shifts, 

that the MTF doesn't), and  {bIx, y; fx, fyM} are the complex-valued eigenfunctions, {e-2 piJxfx+yfyN}.

The clever experiment of Campbell and Green

‡ The idea--bypass the optics to measure the "eye-brain" response

How can we measure the MTF of a real eye?  The first measurements were made in the late 1950's and 1960's using 
several techniques. One of the cleverest was developed by Campbell and Green in 1966.

Let us break the way contrast of a grating gets processed into two part
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Our goal is to measure the MTF, but to do this would require getting access to ar(f). This seems like a tough problem. 
Campbell and Green came up with the following solution. Rather than measuring the MTF directly, they measured two 
other functions. One is called the contrast sensitivity function (CSF) of the human eye. This is measured by having 
subjects adjust the contrast of a grating until it is just disappearing, that is where the brain's "response" is always k.  One 
then plots up the reciprocal of contrast (called sensitivity) as a function of spatial frequency. Such a graph is shown below. 
Using our terminology

The second function they measured, we will call the "brain's contrast sensitivity function", or BTF for short. The idea was 
to present a grating on the retina whose contrast was unaffected by the optics of the eye, and then measure the contrast 
sensitivity in the same way as for the CSF

If we know the CSF and the BTF, we can get the MTF. But how can the BTF be measured? The solution was to image two 
points of coherent laser light in the pupil of the eye. These two point sources in the pupil produce a sinusoidal interference 
pattern on the retina of the eye. In fact, the pupil corresponds to the fourier plane of the retina--the fourier transform of a 
pair  of delta functions is a sinusoid, because of constructive and destructive interference (see Appendix and the 
cosine/dirac delta transform pairs). Further, the shift theorem says that if the points are moved apart in the pupil, the 
frequency of the grating gets higher, because the retinal pattern shrinks as the pupil fourier pattern expands. Campbell and 
Green were able to have subjects modulate the contrast of the interference pattern to find the BTF, or contrast sensitivity 
as a function of spatial frequency with the optics effectively bypassed
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‡ The measured CSF and MTF of the human eye

The solid line shows the BTF--we require less contrast to see a grating if the optics are bypassed. The line with the data 
points shows the CSF. The MTF is the CSF/BTF and is shown in the upper panel
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In this figure, the estimated MTFs are plotted for various pupil sizes (2, 2.8,3.8, and 5.8 mm). The curves are normalized 
so that the diffraction limit would correspond to a frequency of 1.  The solid line is the diffraction limit. You can see that 
for high frequencies, the eye with a 2mm pupil is essentially diffraction limited. However, aberrations (e.g. spherical) 
greatly affect contrast for big pupils.

The theoretical diffraction limit and receptor spacing

‡ Diffraction limit

What is the theoretical diffraction limit?  The MTF can be calculated by computing the fourier transform of the Airy disk 
function. For round and square pupils, the curves look roughly like

(Note: these are hand sketched, and are meant mainly to show the steady monotonic drop in contrast transfer).

The high frequency cut-off is:

One of the advantages of spatial frequency analysis of the optics is that it gives us a precise description of the information 
that is lost--i.e. spatial frequencies higher than the cut-off frequency. (There have been efforts to recover this missing high 
frequency information in optics using analytic continuation, but here one is again thwarted by noise). The period Pc = .016 
deg = 1/63. Now recall that the cone spacing = .008 deg. How well does receptor sampling period, Ps,  match the period of 
the highest frequency in a broad band image spectrum?
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‡ The Nyquist limit

This is actually a perfect match (perhaps too perfect?). The Whittaker-Shannon theorem says that one can perfectly 
reconstruct a continuous band-limited function if the discrete sampling rate, fs, is at least twice that of the highest fre-
quency in the spectrum

The smallest sampling frequency that one can get by with is twice the highest frequency in the spectrum of the signal. This 
smallest frequency is called the Nyquist rat

If the sampling frequency is less, then aliasing results. Aliasing produces moiré patterns. (See Williams, 1986; Coletta et 
al., 1990 for examples of the effects of aliasing in human vision). Is aliasing bad for neural processing of images? Allan 
Snyder once took me down in the basement of the Physiological Laboratories at the University of Cambridge to show me 
a Garter snake in a terrarium. With a simple ophthalmoscope, we peered into the tiny eye of the snake. We saw the 
photoreceptor mosaic in striking detail and regularity--the optics were clearly better than the sampling frequency.

We now have the tools to calculate an upper bound on the information capacity of the eye. The modulation transfer 
function effectively limits the size of a resolution cell, as specified by diffraction and the Whittaker-Shannon sampling 
theorem, and photon statistics limit the number of distinguishable levels. There are formulas that combine these two 
factors to give precise measures of the limits to optical capacity in terms of bits.
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‡ Why aren't the optics better?

Making the pupil bigger leads to problems with aberrations (spherical).

Making the pupil smaller leads to increasing diffraction blur.

If the pupil was bigger, and aberration could be reduced, we would have to pack the cones more tightly to ade-
quately sample the higher spatial frequencies passed by the optics. It is thought that there may be a physical wave-guide 
limit of 1-2 micrometers to receptor diameter, across animals of varying acuity (eagle, hawk or human).

Next time
Linear systems and visual neurons

->Multi-resolution, wavelets

->A model of the spatial filtering properties of neurons in the primary visual cortex

Appendices

Generating a Contrast Sensitivity Function (CSF) demo

CSF@x_, y_D := 127.5` ‰
-

y
0.125` CosB2 p ‰

x
4 xF + 127.5`;

csfg = DensityPlot@CSF@x, yD, 8x, 0, 6<, 8y, 0, 1<, PlotPoints Ø 512,
PlotRange Ø 81, 254<, Mesh Ø False, Axes Ø False, Frame Ø FalseD

The nominal physical contrast is constant across any horizontal straight line; however, the subjective appearance of the 
boundary between the easily visible and nearly invisible contrast transition appears like an upside-down U-shaped func-
tion, ›.

‡ Model CSF

csfpg = PlotB-‰-fx + ‰
-
fx
2 , 8fx, 0, 8<, Axes Ø FalseF

Mathematica has built-in symbolic functions: FourierTransform[ ] and 
InverseFourierTransform[ ]

24 8.LinearSystemsOptics.nb



Mathematica has built-in symbolic functions: FourierTransform[ ] and 
InverseFourierTransform[ ]

Fourier transform : F HwL =
1

2 p
‡
-¶

¶
f HtL ei w t „t ,

Inverse fourier transform : f HtL =
1

2 p
‡
-¶

¶
F HwL e-i w t „w

‡ 1. The fourier transform of the inverse fourier transform of g[f] is g[f].

g[f]=

FourierTransform@InverseFourierTransform@g@wD, w, xD, x, wD

‡ 2. Convolution theorem: f*g = InverseFourierTransform[FourierTransform[f[x],x,w] 

FourierTransform[g[x],x,w],w,x]

InverseFourierTransform@
FourierTransform@g@xD, x, wD FourierTransform@h@xD, x, wD, w, xD

InverseFourierTransform@
FourierTransform@g@xD, x, fD FourierTransform@h@xD, x, fD, f, xD

‡ Fourier transform of a delta function is constant

FourierTransform@DiracDelta@xD, x, fD

1

2 p

‡ What is the Fourier transform of Cos[x]?

FourierTransform@Cos@xD, x, fD

p

2
DiracDelta@-1 + fD +

p

2
DiracDelta@1 + fD
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‡ Some functions have the same shape in Fourier domain as in the spatial domain

FourierTransform@Exp@-Hx ê sL^2D, x, fD

‰
-
1
4
f2 s2

s2

2

Note that as the gaussian gets narrower in space, it gets broader in frequency.
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